KESTEVEN AND SLEAFORD HIGH SCHOOL <u>Physics Scheme of Learning</u>

P9: Motion

Intent – Rationale

This topic will develop the learners understanding of how motion can be quantified numerically and represented graphically. The concepts of displacement, velocity and acceleration will be represented in displacement-time, velocity-time and acceleration-time graphs. Learners should develop the ability to understand how to interpret these graphs including the analysis of gradients to represent the rate of change.

Sequencing – what prior learning does this topic build upon?	Sequencing – what subsequent learning does this topic feed into?
KS3 Year 7 Topic 2 – Forces and effects	GCSE: P10 Force and motion
KS3 Year 7 Topic 6 – Motion	A-Level: Mechanics
GCSE P8 – Forces in balance	
What are the links with other subjects in the curriculum?	What are the links to SMSC, British Values and Careers?
Maths: Living graphs	GB4b&e – Students develop confidence moving between rates of change graphs leading ultimately towards calculus
What are the opportunities for developing literacy skills and developing	What are the opportunities for developing mathematical skills?
learner confidence and enjoyment in reading?	

KESTEVEN AND SLEAFORD HIGH SCHOOL

FROM THE LIBRARY	• Make calculations using ratios and proportional reasoning to convert
Designs in Science:Movement-530	units and to compute rates (1c, 3c).
Force and Motion-531	• Relate changes and differences in motion to appropriate distance- time, and velocity-time graphs, and interpret lines and slopes (4a, 4b, 4c, 4d).
	• Interpret enclosed areas in velocity-time graphs (4a, 4b, 4c, 4d, 4f).
	 Apply formulae relating distance, time and speed, for uniform motion, and for motion with uniform acceleration, and calculate average speed for non-uniform motion (1a, 1c, 3c). Estimate how the distances required for road vehicles to stop in an
	emergency, varies over a range of typical speeds (1c, 1d, 2c, 2h, 3b, 3c).
	• Apply formulae relating force, mass and relevant physical constants, including gravitational field strength, to explore how changes in these are inter-related (1c, 3b, 3c).
	• Apply formulae relating force, mass, velocity and acceleration to explain how the changes involved are inter-related (3b, 3c, 3d).
	• Estimate, for everyday road transport, the speed, accelerations and forces involved in large accelerations (1d, 2b, 2h, 3c).

KESTEVEN AND SLEAFORD HIGH SCHOOL Physics Scheme of Learning

P9: Motion

Intent – Concepts

What knowledge will students gain and what skills will they develop as a consequence of this topic?				
Know				
State that the gradient of a distance-time graph represents the speed. Estim	ate typical speeds for walking, running, and cycling. Describe the difference			
between speed and velocity using an appropriate example. Measure the acceleration of an object as it moves down a ramp. Identify changes in speed on a distance-time graph using change in gradient.				
Αρρίν				
Use the gradients of distance–time graphs to compare the speeds of objects. Calculate the speed of an object and the time taken to travel a given distance using the speed equation. Calculate the change in velocity for an object under constant acceleration for a given period of time. Calculate the distance travelled using information taken from a velocity-time graph for one section of motion.				
<u>Extend</u>				
Compare and contrast the features of a distance-time, displacement-time, and velocity-time graph. Extract data from a distance-time graph to calculate the speed of an object at various points in its motion. Combine equations relating to velocity and acceleration in multi-step calculations. Apply				
transformations of the equation v2 – u2 = 2as in calculations involving of	change in velocity and acceleration where both velocities are non-zero.			
What subject specific language will be used and developed in this topic?	What opportunities are available for assessing the progress of students?			
acceleration	P9 L5 End of topic Test			
change of velocity per second (in metres per second per second, m/s ²)				
deceleration	Past exam question assessed homework "Parachute Jump"			
change of velocity per second when an object slows down				
displacement	Teams assignment			
distance in a given direction				
gradient (of a straight line graph)				

KESTEVEN AND SLEAFORD HIGH SCHOOL

change of the quantity plotted on the y-axis divided by the change of the	
quantity plotted on the x-axis	
tangent	
a straight line drawn to touch a point on a curve so it has the same gradient as the curve at that point	
velocity	
speed in a given direction (in metres/second, m/s)	

Intent – Concepts

Lesson title	Learning challenge	Higher level challenge	Suggested activities and resources
1. Speed and Distance-Time Graphs	I can explain how to calculate speed using the equation: speed = distance / time I can interpret information from a distance-time graph	I can extract data from a distance- time graph to calculate the speed of an object at various points in its motion. I can perform calculations of speed, distance, and time which involve conversion to and from SI base units.	Demo (data logger and ultrasound distance sensor) Link
2. Velocity and Acceleration	I can explain the difference between speed and velocity I can explain how to calculate acceleration	I can compare and contrast the features of a distance-time, displacement-time, and velocity- time graph. I can combine equations relating to velocity and acceleration in multi- step calculations.	Demo (data logger, light gate and double mask) Link
3. Velocity-time graphs	I can explain how to calculate acceleration and distance from a velocity-time graph	I can calculate the acceleration of an object from values taken from a velocity-time graph.	Demo (data logger and ultrasound distance sensor) Link

KESTEVEN AND SLEAFORD HIGH SCHOOL

		I can calculate the total distance	
		travelled from a multi-phase	
		velocity-time graph.	
4. Analysing motion graphs	I can explain how to calculate speed from a v-t graph when speed is not constant I can explain how to use the equation v2=u2+2as	I can use the gradient of a velocity-	
		time graph to determine the	
		acceleration of an object.	
		I can apply transformations of the	Link
		equation v2 – u2 = 2as in	LINK
		calculations involving change in	
		velocity and acceleration where	
		both velocities are non-zero.	
5. End of topic test			