<u>Mathematics Scheme of Learning</u> <u>Year 5 – Term 5/Angles in polygons/Pythagoras/Ratio/Sequences</u>

Intent - Rationale

This term begins with applying and extending pupil knowledge on triangles and quadrilateral angles to any polygon. Year 8 then build on their Year 7 introduction to Pythagoras' theorem to using to solve context problems. They continue to use their maths in context in looking at using Ratio with maps and scale drawings. The final topic revisits finding the nth term of a linear sequence, a topic that students typically struggle to recall; this is in preparation for Year 9 new sequence knowledge.

Further pattern sequences will be explored such as matchstick problems.

Sequencing – what prior learning does this topic build upon?	Sequencing – what subsequent learning does this topic feed into?
 Year 8 Term 3 angles in triangles, quadrilaterals and in parallel lines Year 7 Term 6 Pythagoras' theorem, Year 8 Term 1 squares and roots Year 8 Term 2 direct proportion, Year 7 term 5 simplifying and dividing in a ratio Year 7 Term 4 nth term of a linear sequence 	 Year 9 Term 2 solving compound angle problems e.g. to identify if shapes tesselate Year 9 Term 3 Pythagoras in 3D and Trigonometry Year 9 Term 6 direct proportion using constant k Year 9 Term 5 quadratic and geometric sequences
What are the links with other subjects in the curriculum?	What are the links to SMSC, British Values and Careers?
 Art Mathematical ideas of pattern and shape Design and Technology Ratio calculations Music Sequences and rhythm, sequences and pattern 	 GB4e - Focus on sequences and a look at famous sequences such as Fibonacci – an opportunity to discuss mathematicians from other countries. GB4e and SMSC (C/SO) - Introduction to Pythagoras, link to the importance of Greek mathematical knowledge and its rediscovery during the Renaissance. GB4e - An early look at proof through investigation and the search for counter examples

Pythagoras' and other cultures Science Ratio problems – calculating mols What are the opportunities for developing literacy skills and developing learner confidence and enjoyment in reading?	What are the opportunities for developing mathematical skills?
How Many Socks Make a Pair? by Rob Eastaway Age 13+ Can maths be creative? This book sets out to prove that it can, through a selection of short articles on surprising maths in everyday life. Through lots of intriguing problems, involving card tricks, polar bears and, of course, socks, Rob Eastaway shows shows how maths can demonstrate its secret beauties in even the most mundane of everyday objects. • What's Your Angle, Pythagoras? (Charlesbridge Math Adventures) by Julie Ellis and Phyllis Hornung • Pythagoras: Mathematician and Mystic (Greatest Greek Philosophers) by Louis C Coakley and Dimitra Karamanides	 Stress importance of sketching right angled triangle and labelling for context problems to prepare for complex problems at GCSE Students commonly struggle with map scales failing to recognise they can be used for any units. Include examples with mixed units

Mathematics Scheme of Learning Year 8 – Term 5

Intent - Concepts

What knowledge will students gain and what skills will they develop as a consequence of this topic?

Know

Recall angles in parallel lines, triangles and quadrilaterals. Calculate the interior and exterior angle of any polygon.

State Pythagoras' theorem and label accurately the sides of a right-angled triangle. Use Pythagoras' theorem to find the length of the hypotenuse and shorter sides.

Express a ratio in its simplest form, including three part ratios, and in the form 1:n. Divide amounts in a given ratio and calculate totals when part of a ratio is known.

Find the term-to-term rule, use to find the next term in a sequence. Find the nth term of a sequence and use to find any term in a sequence.

Apply

Calculate the number of sides of a polygon when the exterior is known.

Use Pythagoras' theorem to solve context problems.

Solve ratio context problems. Using map scales – link back to bearings work.

Create a numerical sequence from a pattern problem

Extend

Goal-less angle problems

Relate angles in parallel lines and Pythagoras to bearings problems

Map work – create a scale diagram

Pattern problems with two variables e.g. black and white tiles

What subject specific language will be used and developed in this topic?	What opportunities are available for assessing the progress of students?
 Parallel, regular polygon, irregular polygon, interior, exterior, sum, tesselate, Pythagoras' theorem, hypotenuse, right-angled triangle, exact form, simplify, term, term-to-term rule, nth term, arithmetic sequence, linear sequence 	 Retrieval homework issued termly followed by teacher www/ebi comments with a week built in for pupils to digest and follow up on feedback. A termly assessment will follow on from this with year group 'topic top up' identified in preparation for next term's teaching. Formative assessment occurs throughout lessons and will address, although not be limited to, the following common misconceptions: Exterior angle of a polygon is a continuous straight line from interior, not the angle around the vertex Each side of a RAT must be squared when applying Pythagoras' theorem, not adding sides together and then squaring

Angles in Polygons	R	А	G
Recall angles in parallel lines, triangles and quadrilaterals			
Calculate the interior angle of any polygon			
Calculate the exterior angle of a polygon			
Calculate the number of sides of a polygon when the exterior is known			

Pythagoras	R	Α	G
State Pythagoras' theorem and label accurately the sides of a right-angled triangle Use Pythagoras' theorem to find the length of			
the hypotenuse			
Use Pythagoras' theorem to find the length of one of the shorter sides			
Use to solve context problems			

Ratio	R	А	G

Express a ratio in its simplest form and in the		
form 1:n		
Form a ratio		
Divide amounts in a given ratio		
Find the total amount when part of a ratio is		
known		
Use and interpret map scales		

Sequences	R	А	G
Find the term-to-term rule, use to find the next term in a sequence			
Find the nth term of a linear sequence			
Use the nth term to find any term in a sequence			
Solve sequence pattern problems			