Year 9 Design & Technology RM Scheme of Learning

Topic: Resistant Materials

Year 1– Term 6 (2 Terms - On Rotation)

<u>Intent – Rationale</u>

Students should: demonstrate an good understanding of Health and Safety; confidently use the workshop equipment accurately and safely; analyse existing products to establish functional design criteria; writeba design brief prioritising functional criteria; Understand the possible conflict between functional and aesthetic design criteria; produce 3D prototypes and be able to convert to 2D design; present details of prototype withannotation to hightlight the functional design solutions; understand how to convert a 3D prototype to a CAD solution with use of CAD for fine design modifications: understand how to use CAD to add aesthitic features to a functional design solution; Uderstand how CAD/CAM can be utilised to make products; understand the properties of thermoforming polymers (Acrylic & HIPS); understand how acrylic can be thermoformed on the strip heater; understand the principle of electronic circuits (components and microchips); understand how to build electronic circuits; understand how to use soldering to connect electronic components onto a pcb; understand how to use thermoforming techniques to make containers (polystyrene/vacuum forming)

Sequencing – what prior learning does this topic build upon?	Sequencing – what subsequent learning do
 The safe use of tools & equipment in the workshop Yr7 Creating 3D products in Resistant Materials 	 Y10 – Design and Technology GCSE – Making prototypes Y11 – Design and Technology GCSE – Appropriate use of CA
 Yr8 working with acrylic – clock project Understanding Resistant Materials for constructing outcomes 	
What are the links with other subjects in the curriculum?	What are the links to SMSC, British Va
 Business Studies – Understanding how consumer demand shapes design Art – Presentation techniques to show the development process Science - Understanding the properties of materials and how they can be changed 	 Problem solving; independence; resilience; encouraging confidence; organisation (GB4)
What are the opportunities for developing literacy skills and developing learner confidence and enjoyment in reading?	What are the opportunities for developing
Subject specific terminology throughout	Measurements throughout prototypes and outcomes
Descriptive writing	Use of scale to develop refined outcomes
Writing a sequence of events	Understanding dimensions on CAD
FROM THE LIBRARY	Geometric understanding
300 Years of Industrial Design; A Heath-604	
Cad/Cam Constructions; S. Aikin-620.00	
Electronic Constructions; S. Aikin-621.38	
Mechanical Construction; S. Aikin-621	

does this topic feed into?

CAD/CAM

Values and Careers?

ing creativity; communication skills;

ing mathematical skills?

Year 9 Design & Technology RM Scheme of Learning

2 Terms - On Rotation

Intent – Concepts

What knowledge will students gain and what skills will they develop as a consequence of this topic?

<u>Know</u>

Students will need to understand:-

How to use a wider range of workshop tools independently; The properties and uses of acrylic and HIPS (High Impact Polystyrene); how acrylic can be wasted, formed and joined to create products; how wood can be wasted, joined to make formers; the working properties of acrylic and be able to 'hand work' and thermoform acrylic.; how understanding and evaluating existing products can assist in the generation of functional design solutions; how to produce prototypes to develop detailed design ideas; how CAD/CAM can be used to create both functional aesthetic features; how functional criteria can be modelled using traditional modelling techniques; how CAD can be used to refine functional design criteria; how to use traditional modelling techniques to produce a prototype; how CAD/CAM can be used to produce 3D functional outcomes; how formers need to be designed and constructed for vacuum forming; how HIPS can be thermo formed using a vacuum forming machine; how microchips work in a circuit; how to recognise an electronic component; how components can be soldered into a circuit

<u>Apply</u>

Use a wide variety of power tools and hand tools in a safe and productive way. (Base material -Acrylic) (Wood for former construction)

Use hand techniques to cut, shape, form and finish acrylic and wood

Identify key functional design criteria and use prototypes to model possible solutions

Use investigation of functional design solutions through the making of prototypes

Record the progress of the designing by prototype

Design and make an individual product using a range of plastic changing techniques including CAD/CAM and thermoforming techniques

Learn through the designing and making process to adapt and modify an outcome using a combination of strategies. Power tools, Hand techniques & CAD/CAM Use CAD create and refine a 3D outcome

Use CAD as a method of 2D and 3D presentation and using a combination of techniques to design a functional outcome

Use CAD/CAM with a prototype to refine and produce a unique 3D outcome (CAD & Laser Cutter)

Use CAD/CAM to apply additional aesthetic features to a functional design solution

Extend

Use CAD/CAM to produce design and make a supplementary item

Produce CAD based designs which utilise extensive slot together technology

What subject specific language will be used and developed in this topic?	What opportunities are available for assessing th	

the progress of students?

 Functional V's Aesthetic design criteria Thermoforming – principles of polymer forming (Strip Heater/ Vacuum Former) 	 Research; functional design criteria; techniques – use iterative design process; finished product; diary of ma
 Acrylic and HIPS (Polystyrene Sheet) as thermoforming polymers Prototypes – developing functional solutions through physical modelling/testing The 'Iterative Design' process through testing and evaluating throughout development phase 	 Mid Project Review Tracking points. Final Assessment of completed project.
 CAD – Computer Aided Design; Understanding & effective use of CAD CAM; Laser cutter - Understanding & effective use of the cutter to shape materials CAD/CAM – Understanding the process of designing and manufacture with CAD/CAM Automated Production -Understanding automated processes 	
 Electronics – Microchips, Electronic components Capacitors, Resistors – Units & values 	
 Soldering electronic components – safe use of soldering irons Formers for Thermoforming; appropriate design and construction 	

e prototypes and effective use of the ake; evaluation.

Intent – Concepts

Lesson title	Learning challenge	Higher level challenge	S
Functional v's Aesthetic design	Students will learn the difference between	Understanding some of the technical issues which	Introduce
	functional and aesthetic design considerations	arise out of the conflict of Function/Aesthetic	Aesthetic of
		appeal	everyday p
Functional design criteria: Familiar Products	Students will learn to use their understanding of	Understanding how market pull, fashion and	Students t
5	functional and aesthetic design by evaluating	trends can affect the conflict between	highlight/c
	familiar household products	functional/aesthetic design	aesthetic
Project Brief Outline of project	Students will learn about the scope of the set	Several unique design features and use of high	Explain the
	project and how to ensure a unique outcome is	level CAD skills for incorporation of aesthetic	given to fu
	designed	features	0
Review of 'Existing Products' to establish criteria	Students will learn how to seek design criteria	Use of other self-sourced existing products to	Review of
	from critical analysis of existing products	broaden the understanding of functional design	functional
	nom entited analysis of existing products	problems	
Individual criteria prioritisation & design brief	Students learn how to use the information gained	Detailed consideration of the key functional	Individual
	from critical analysis to formulate key functional	criteria giving a variety of solutions	
	design criteria for their prototype		
Understanding rules of modelling/prototypes	Students will learn how to make 3D prototypes to	Extensive modelling with use of other materials eg	Introductio
	meet their specific functional requirements	plasticine, foam board etc	Demonstra
			models
Making prototypes	Students learn through experimentation how to	Range of prototypes used to solve the different	Students r
	build models/prototypes	problems identified	aimed at t
Testing prototypes	Students learn how to use devices to test the		Students r
	function of their prototypes against the		design pro
	established criteria		design crit
Refining prototypes – Recording the progress	Students will learn how to use the iterative design		Using exan
	process to evaluate and refine their prototypes		develop ar
	recording the evidence of the changes		
Reminder of 2D CAD techniques & CAD/CAM uses	Students will learn how to use CAD to draw 2D	Investigate and use a wider range of CAD functions	Students r
	versions of their models/prototypes	using the 'help' section	can be use
Using CAD to develop solutions from prototypes	Students will learn how to accurately convert a	Develop complex solutions meeting both	Students s
	model in to a CAD design using a variety of	functional and aesthetic design criteria	2D CAD de
	techniques	Seek 3 rd party input and use it to develop complex	using CAD
		solutions	
Refining and testing using CAD	Students will learn to use CAD based outcomes for		Students ta
	final testing prior to laser cutting		to 3D mod
Introduction to thermoforming – strip heater	Students will learn how to safely use the strip		Students s
	heater for line bending. Use of scrap material to		Teacher de
	refine line bending skills		acrylic pric
Making the outcome	Students will learn how to use their strip heater	Making a complex outcome	Students u
	skills to convert their 2D laser cut outcomes in to		acrylic
	finished 3D outcomes		
Making the outcome	Students will learn how to use their strip heater		Students u
	skills to convert their 2D laser cut outcomes in to		acrylic
	finished 3D outcomes		
			1

Suggested activities and resources

e the concept of Functional design V's c design using familiar examples of y products.

to research familiar products to distinguish between functional and

he project highlighting the priority to be functional design solutions

of existing products to formulate al design criteria

al specific design criteria

tion to modelling and use of prototypes. trate safe use of craft knifes for card

reminded how to develop prototypes their priority criteria

reminded of how to use the iterative rocess to develop solutions to their stated riteria

amples students taught how to evaluate, and refine their prototype model

s reminded of the CAD software and how it sed for 2D design work

s shown how to convert a 3D prototype to design. How to refine design solutions D

s taught how to convert 2D CAD designs in odels for final testing/checking

s shown how to use the strip heater. demonstration. Students to use scrap rior to forming their outcome

s using strip heater for thermoforming

s using strip heater for thermoforming

Testing the outcome against the functional criteria	Students will learn how to use their unique design criteria to objectively evaluate their outcome		Students e criteria to
Introducing Electronics & Soldering	Students will learn the basics of electronic circuits to include microchips and components. Students will learn how to safely use soldering equipment	Investigate commercial production of micro chips Show an understanding of how miniaturisation enabled modern electronics	Teacher ex microchips Capacitors soldering i PCB
Assembling making the circuit	Students will learn how to identify and locate electronic parts on a PCB.		Students s Reading re capacitors
Thermoforming HIPS & making a former	Students will learn how resistant materials can be used to make a former. Students will learn the rules for former design. Students will learn how the vacuum forming machine forms HIPS		Through us shown how forming. D
Make/adapt a former	Students will learn the skills necessary for shaping and finishing a former in wood		Students s
Make a container	Students will learn how to use their former to produce a vacuum formed container		Students s works. Tea formers
Record manufacturing methods	Students will learn how to produce an accurate account of their design/development and production of their outcome. Product Analysis; Unique prioritized design criteria, Model/prototype development (annotated photo's) ; CAD development; Methods & Electronics		Students r methods. I
			Use of the – 'Screen C table p81, Vacuum Fo

s encouraged to use their priority design to evaluate their outcome.

explanation of the principles of circuits, ips and electronic components. Resistors & ors. Teacher demonstration of safe use of g iron for soldering components onto a

s shown how to place parts on to a PCB. resistor values, understanding polarity of rs

use of example models students are ow to construct a former for vacuum Draft angles and surface finishing.

s shown how to make/adaft formers

s shown how the vacuum forming machine eacher demonstration using existing

s reminded of the need to record all s. Prototype making; photo's & annotation

he strip heater – line bending, Use of CAD n Grabs' & annotation. Resistor Values 1, Soldering techniques & equipment p83. Forming diagrams & annotation.