KESTEVEN AND SLEAFORD HIGH SCHOOL

Computer Science Scheme of Learning

Year 11 – Term 1

<u>Intent – Rationale</u>

This term introduces students to the Von Neumann architecture and its Fetch Decode Execute cycle, the role of primary and secondary storage and the key performance indicators: clock speed, cores and cache.

Sequencing – what prior learning does this topic build upon?	Sequencing – what subsequent learning does this topic feed into?	
Year 9 Term 2	A-Level Computer Science chapter 10 (Y12 and Y13 Term 3)	
What are the links with other subjects in the curriculum?	What are the links to SMSC, British Values and Careers?	
• N/A	• N/A	
What are the opportunities for developing literacy skills and developing learner confidence and enjoyment in reading?	What are the opportunities for developing mathematical skills?	
 Modern Computer Architecture and Organization: Learn x86, ARM, and RISC-V architectures and the design of smartphones, PCs, and cloud servers by Jim Ledin 	Calculating and comparing CPU performance indicators	

KESTEVEN AND SLEAFORD HIGH SCHOOL

Computer Science Scheme of Learning

<u>Year 11 – Term 1</u>

Intent - Concepts

What knowledge will students gain and what skills will they develop as a consequence of this topic?

Know

- Architecture of the CPU: the purpose of the CPU, the fetch-execute cycle, common components and their function (ALU (arithmetic logic unit), cu (control unit), cache, registers), von Neumann architecture: MAR, MDR, register, program counter, accumulator
- CPU performance: how common characteristics of CPUs affect their performance: clock speed, cache size and number of cores
- Embedded systems: the purpose and characteristics of embedded systems and examples of embedded systems
- **Primary storage (memory):** the need for primary storage, the difference between RAM and ROM, the purpose of ROM in a computer system, the purpose of RAM in a computer system, virtual memory
- Secondary storage: the need for secondary storage, common types of storage (optical, magnetic, solid state), suitable storage devices and storage media for a given application, the advantages and disadvantages of different storage devices and storage media relating to these characteristics: capacity, speed, portability durability, reliability, cost

Apply

- Be able to describe: what actions occur at each stage of the fetch-execute cycle, the role/purpose of each component and what it manages, stores, or controls during the fetch-execute cycle, the purpose of each register, what it stores (data or address) and the difference between storing data and an address
- Be able to describe the effects of changing any of the common characteristics on system performance, either individually or in combination
- Be able to describe what embedded systems are, typical characteristics of embedded systems and identify a range of common embedded systems
- Be able describe why computers have primary storage, how this usually consists of ram and ROM, key characteristics of ram and ROM, why virtual memory may be needed in a system, how virtual memory works and the transfer of data between ram and HDD when ram is filled and its impact on performance
- Be able to describe why computers have secondary storage, recognise a range of secondary storage devices/media, differences between each type of storage device/medium, compare advantages/disadvantages for each storage device and be able to apply their knowledge in context within scenarios

Extend

• Understand how optical and magnetic storage devices physically operate

KESTEVEN AND SLEAFORD HIGH SCHOOL

What subject specific language will be used and developed in this topic?		What opportunities are available for assessing the progress of students?	
 Architecture: Fetch Decode Execute, Components Cache Register Bus Address Data Von Neumann Accumulator CPU performance: Characteristics Clock speed, Hertz Cache Cores (dual, quad, octo) 	 Storage: Primary Secondary Read only memory Random access memory Volatile Optical Magnetic Solid state Virtual memory Swap file Thrashing 	 Class notes and in-lesson observation Kahoot starters/plenaries and verbal questioning Formal assessment in term 2 	

<u>Intent – Concepts</u>

Lesson title	Learning challenge	Higher level challenge	Suggested activities and resources
			See P drive for lesson presentations/resources