Chemistry Scheme of Learning

<u>Year 9 – Term 6 Topic 2</u>

<u>Intent – Rationale</u>

The students complete Topic 2 Bonding and apply what they have learnt about chemical bonds to more specific examples of allotropes of carbon and polymers. They a and the potential risks.

	Sequencing – what prior learning does this topic build upon?		Sequencing – what subsequent learning d
Γ	Year 7 Topic 1 – Particles	•	Year 10 GCSE Topic 4 – Chemical Reactions (electrolysis)
	 Year 7 Topic 2 – Atoms and Elements 	•	Year 10 GCSE Topic 5 – Energy Changes (making and breal
	Year 7 Topic 6 – Chemical Compounds	•	Year 11 GCSE Topic 7 – Organic Chemistry (organic molec
	Year 8 Topic 7 The Periodic Table	•	Year 11 GCSE Topic 8 – Chemical Analysis (Ion tests)
	Year 8 Topic 12- Innovative Materials	•	Year 11 GCSE Topic 9 – Chemistry of the Atmosphere (sma
	Year 9 GCSE Topic 1 – Atomic Structure	•	Year 11 GCSE Topic 10 – Using Resources (all!)
		•	Year 12 AS Topic 1 – Atomic Structure and the Periodic Ta
		•	Year 12 AS Topic 3 – Bonding
		•	Year 12 AS Topic 4 - Energetics
		•	Year 12 AS Topic 6 – Redox
		•	Year 12 AS Topic 7-9 - Organic Chemistry
		•	Year 13 A2 All Organic Topics
	What are the links with other subjects in the curriculum?		What are the links to SMSC, British V
Γ	• Base the content here on what you already know but there will be time in future to liaise further	•	Uses of nanotechnology, current and future. Career prosp
	as part of our collaborative work		technology in engineering, medicine and other areas of in
		•	Uses of allotropes of carbon in everyday life, including fut
			innovative ways
		•	Polymers and their uses in plastics and other materials, qu
			substances and considering greener alternatives
	What are the opportunities for developing literacy skills and developing learner confidence and		What are the opportunities for developi
	enjoyment in reading?		
	FROM THE LIBRARY	•	Calculating surface area to volume ratios for nanoparticle
	Continue to reference the previous term's reading lists, as well as:	•	Standard form
	Expanding Industry; I Teichmann-620	•	Conversion of units
	Farming and the Environment; Mark lambert-363.7		

also learn about nanotechnology, its uses
;
oes this topic feed into?
king bonds) ules)
all molecules)
ble
/alues and Careers?
ects involved in developing this new
ure potential of carbon nanotubes in
iestioning the sustainability of these
ng mathematical skills?
5

2

KESTEVEN AND SLEAFORD HIGH SCHOOL

Chemistry Scheme of Learning

<u>Year 9 – Term 6</u>

Intent – Concepts

What knowledge will students gain and what skills will they develop as a consequence of this topic?

• Can I describe what a polymer is?

Can I recognise the structure of diamond and graphite from information provided in written or diagrammatic form? •

- Can I recognise the structure of a fullerene or nanotube in diagrams and prose? •
- Can I classify a particle as coarse, fine, or nanoparticles based on their size? •
- •
- Can I explain why small molecules and polymers do not conduct electricity?
- Can I explain the properties of diamond and graphite in terms of its bonding? •
- Can I use molecular models of graphene, nanotubes, and fullerenes to explain their properties? •
- Can I quantitatively explain the relationship between surface area to volume ratio and particle size and its effect on properties? Can I decide and justify in detail why nanotechnology research should continue?
- Can I evaluate the advantages and disadvantages of using polymers?
- Can I justify in detail a use for graphite and diamond based on their properties?
- Can I justify in detail a use for graphite and diamond based on their properties? •

• Can I convert standard form into a variety of length units? Can I calculate surface area to volume ratio? Can I evaluate the use of nanoparticles in their applications, including sun cream?			
What subject s	pecific language will be used and developed in this topic?	What opportunities are available for assessing the progress of students?	
<u>Word</u>	Definition	 Long answer questions Topic 2 End of topic Test 	
Anion	A negative non-metal ion		
Cation	A positive metal ion		

Apply

Extend

Know

Covalent bond	When two atoms share a pair of electrons.
	This is a result of electrostatic attraction
	between the nuclei of the atoms and the
	shared electrons
Delocalised	A bonding electron which is no longer
Electron	associated with any particular atom. It is free
	to move through the structure
Diamond	An allotrope of carbon in which each carbon
	atom forms four covalent bonds to other
	carbon atoms
Ductile	The ability to draw a metal into wires
Electrostatic Force	The attraction between opposite charges
Graphite	An allotrope of carbon in which each carbon
•	atom forms three covalent bonds to other
	carbon atoms. The fourth electron is
	delocalised
Intermolecular	The attraction between individual molecules in
force	a <u>covalently</u> bonded substance
lon	A charged particle produced by the loss or gain of electrons
Ionic Bond	The electrostatic force between oppositely
	charged ions
Lattice	A huge 3D network of atoms or ions
Malleable	The ability to hammer a material into shape
Metallic bond	The electrostatic attraction between the
	positive metal ions in the lattice and the
	delocalised electrons

Molecule	Two or more atoms <u>covalently</u> bonded			
	together. Molecules can be elements or			
	compounds			
Molecular Formula The chemical formula that shows the actual				
	number of atoms in a particular molecule			
Nanoscience	The study of very tiny particles or structures			
	between 1 and 100 nanometres in size (1			
	nanometre = 10 ⁻⁹ metres)			
Polymer	A substance made from very large molecules			
	that form from many repeating units called			
monomers				

Intent – Concepts

Losson title	Learning	Lligher Joyal	
Lesson title	challenge	challenge	
	Can I describe	Can	
Topic 2 Lesson	what a	Cdil I	
9 Polymers	polymer is?	evaluate the	
5 i orymers	Can Lexplain	auvantages	
	why small	and	
	molecules and	disadvantage	
	polymers do	s of using	
	not conduct	polymers?	
	electricity?		
Tonic 2 Lesson	Can I recognise	Can I justify in	
	the structure	detail a use	
10a Giant	of diamond	for graphite	
Covalant	and graphite	and diamond	
Covalent	from	based on their	
Structures	information	properties?	
	provided in		
	written or		
	diagrammatic		
	form?		
	the properties		
	the properties		
	or diamond		
	torms of its		
	bonding?		
	bonung:		
Tania 2 Lasaan	Can I	Can Liustify in	
Topic Z Lesson	recognise the	detail a use	
10b Fullerenes	structure of a	for graphene,	
	fullerene or	nanotubes	
and Graphite	nanotube in	and fullerenes	
	diagrams and	based on their	
	prose?	properties?	
	Can I use		
	molecular		
	models of		
	graphene,		
	nanotubes,		
	and fullerenes		
	to explain their		
	properties?		
Topic 2	Can I classify a	Can I convert	
	particle as	standard form	
ivanotechnolog	coarse, fine, or	into a variety	
v	nanoparticles	of length	
1	pased on their	units?	
	size?	1	

Suggested activities and resources

Topic 2 Nanotechnolog Y	Can I quantitatively explain the relationship between surface area to volume ratio and particle size and its effect on properties? Can I decide and justify in detail why nanotechnolog y research should continue?	Can I calculate surface area to volume ratio? Can I evaluate the use of nanoparticles in their applications, including sun cream?	
Test and Long Answer Question	Can I recall and apply my knowledge of bonding to unfamiliar questions and examples?		

