KESTEVEN AND SLEAFORD HIGH SCHOOL Chemistry Scheme of Learning

Year 10 – Term 1/Topic 4 and Topic 3

<u>Intent – Rationale</u>

Pupils begin the year with the tail end of Topic 4, focussing on electrolysis. This was not previously covered as it was necessary for pupils to understand bonding which was taught at the end of Year 9. Electrolysis allows pupils to develop their understanding of bonding and apply it to real life uses. After electrolysis pupils begin the Quantitative Chemistry topic (Topic 3) which involved calculations based on chemical reactions. The exam board intended for this to be taught earlier on in the course before the Chemical Changes Topic (Topic 4), but we felt it would be too early to cover these difficult concepts in year 9. Much of this topic is Chemistry only so pupils need to be in sets. We also believe it is more useful for pupils to learn about the chemical reactions before applying mathematical concepts to them

Sequencing – what prior learning does this topic build upon?	Sequencing – what subsequent learning does this topic feed into?
 Unit 1 The nature of atoms and their sub-atomic particles. Unit 2 The formation of ions and ionic bonding. The properties of ionic compounds. KS3 Word equations and balanced symbol equations. 	All A level Chemistry Physical Chemistry learning.
What are the links with other subjects in the curriculum?	What are the links to SMSC, British Values and Careers?
• Base the content here on what you already know but there will be time in future to liaise further as part of our collaborative work	 The uses of electrolysis in industrial processes The use of chemical calculations in the development of all industrial chemical processes including pharmaceuticals.
What are the opportunities for developing literacy skills and developing learner confidence and enjoyment in reading?	What are the opportunities for developing mathematical skills?
FROM THE LIBRARY- Students should continue to access the previous Terms reading lists, and familiarise themselves further with the Science collection within the library.	 Positive and negative numbers Mole calculations Manipulation of formulae Use of standard form

KESTEVEN AND SLEAFORD HIGH SCHOOL Chemistry Scheme of Learning

Year 10 – Term 1/Unit 4 and Unit 3

Intent – Concepts

What knowledge will students gain and what skills will they develop as a consequence of this topic?

<u>Know</u>

To know what happens in electrolysis

To know the types of substance that can be electrolysed.

To know what happens to ions during electrolysis

To know how water affects the products of electrolysis.

To know why some metals are extracted with carbon and others by electrolysis.

To know the process of extracting aluminium from its ore.

To know the half-equation at each electrode during the electrolysis of aluminium oxide.

To know the half-equation at each electrode during the electrolysis of an aqueous solution.

To know that the law of conservation of mass states that no atoms are lost or made during a chemical reaction so the mass of the products equals the mass

of the reactants.

To know that chemical reactions can be represented by symbol equations which are balanced in terms of the numbers of atoms of each element involved on both sides of the equation.

To know what is meant by the relative formula mass of an element.

To know that chemical equations can be interpreted in terms of moles.

To know that the balancing numbers in a symbol equation can be calculated from the masses of reactants and products by converting the masses To know that the balancing numbers in a symbol equation can be calculated from the masses of reactants and products by converting the masses in grams to amounts in moles and converting the numbers of moles to simple whole number ratios

To know that the concentration of a solution can be measured in mass per given volume of solution, eg grams per dm³ (g/dm³)

To know that the concentration of a solution can be measured in mol/dm³

To know that the amount in moles of solute or the mass in grams of solute in a given volume of solution can be calculated from its concentration in mol/dm³

To know that the amount in moles of a solute in a given volume of solution can be calculated from its concentration in mol/dm³ To know that if the volumes of two solutions that react completely are known and the concentration of one solution is known, the concentration of the other solution can be calculated

To know that in a chemical reaction involving two reactants, it is common to use an excess of one of the reactants to ensure that all of the other reactant is used

To know that even though no atoms are gained or lost in a chemical reaction, it is not always possible to obtain the calculated amount of a product To know that the amount of a product obtained is known as the yield. When compared with the maximum theoretical amount as a percentage, it is called the percentage yield

To know that the atom economy (atom utilisation) is a measure of the amount of starting materials that end up as useful products.

Apply

To be able to predict the products of the electrolysis of an aqueous solution. To perform an investigation into the electrolysis of a solution using inert electrodes. To be able to calculate the relative formula mass of a simple compound. To understand that some reactions may appear to involve a change in mass

To be able to calculate the number of moles (or the mass) given the mass (or number of moles) of substance using simple ratios.

To be able to calculate the masses of reactants and products from the balanced symbol equation and the mass of a given reactant or product

To be able to calculate the mass of solute in a given volume of solution of known concentration in terms of mass per given volume of solution

To be able to calculate the percentage yield of a reaction

To be able to calculate the volume of a gas at room temperature and pressure

<u>Extend</u>

To be able to predict the products of electrolysis.

To be able to represent the reactions at each electrode using half-equations.

To be able to calculate the relative formula mass of a complex compound

To be able to explain any observed changes in mass in non-enclosed systems during a chemical reaction given the balanced symbol equation for the reaction and explain these changes in terms of the particle model

To be able to calculate the number of moles (or the mass) given the mass (or number of moles) of substance using more complex ratios.

To be able to explain how the mass of a solute and the volume of a solution is related to the concentration of the solution.

To be able to determine the concentration of unknown solutions using titration techniques and calculations

KESTEVEN AND SLEAFORD HIGH SCHOOL To be able to explain the effect of a limiting quantity of a reactant on the amount of products it is possible to obtain in terms of amounts in moles or

masses in grams To be able to calculate volumes of gaseous reactants and products from a balanced equation and a given volume of a gaseous reactant or product

guage will be used and developed in this topic?	What opportunities are available for assessing the progress of student
and of all attracts (an in of average	
oss of electrons/ gain of oxygen	
ain of electrons/ loss of oxygen	
st of elements in order of their reactivity	
n atom that has gained or lost an electron form a charged particle	
positively charged ion	
negatively charged ion	
a s n	t of elements in order of their reactivity atom that has gained or lost an electron form a charged particle positively charged ion

Electrode	A conducting rod connected to the positive and negative terminal of a cell or battery. It is used in electrolysis
Cathode	A negatively charged electrode which attracts cations
Anode	A positively charged electrode which attracts anions
Inert	Unreactive
Half equation	An equation that describes oxidation or reduction by showing the movement of electrons.
Solution	When an ionic compound is dissolved in water
Electrolysis	The breakdown of a substance containing ions using electricity
Bauxite	Ore containing aluminium oxide
Cryolite	A substance in which aluminium oxide is dissolved during the extraction of aluminium. It has a lower melting point than aluminium oxide
Hydroxide ion	OH ⁻ produced during the electrolysis of solutions

Halide ion	An ion formed from Group 7 atoms e.g. Cl ⁻

Relative Atomic	The average mass of an atom of an element compared	
Mass	to carbon-12, taking into account naturally occurring	
	isotopes	
Relative Formula	The total relative atomic masses added up in the ratio	
Mass	shown in the chemical formula of a substance	
Mole	A quantity of 6.02 x 10^{23}	
	The amount of substance in the relative atomic or	
	formula mass in grams.	
Avogadro Constant	The number of atoms, molecules or ions in a mole of	
	any substance (6.02 x 10 ²³ per mole)	
Limiting Reactants	A reactant which is completely used up in a chemical	
	reaction and determines the amount of product which	
	can be made. Other reactants are said to be in excess	
Concentration	The amount of solute dissolved in a certain volume of	
	solvent	
Titration	A method for measuring the volumes of two solutions	
	that react together	
End Point	The point in a titration where the reaction is complete	
	and the titration should stop	
Pipette	A glass tube used to measure accurate volumes of	
	liquid. It is limited in that it can only measure one	
	specific volume	

Burette	A long glass tube with a tap at one end and markings	
	to show volumes of liquid. It is used to add known	
	volumes of liquids that are measured very accurately	
Concordant	When repeats in a titration are within 0.1 cm ³ of each	
	other. At least two concordant results are needed. The	
	first rough titration should not be included in this	
Percentage Yield	The actual mass of product collected in the reaction	
	divided by the maximum mass that could have been	
	formed in theory, multiplied by 100	
Atom Economy	A measure of the amount of starting materials that	
	end up as useful products	

Intent – Concepts

Lesson title	Learning challenge	Higher level challenge	Suggested activities and resources
Introduction to electrolysis	To know what happens in electrolysis To know the types of	To be able to predict the products of electrolysis.	
	substance that can be electrolysed.		
Electrolysis of molten	To know what happens to ions during electrolysis	To be able to represent the reactions at each electrode	
compounds	To know how water affects the products of electrolysis.	using half-equations.	
Electrolysis of aluminium oxide	To know why some metals are extracted with carbon and others by electrolysis.	To know the half-equation at each electrode during the electrolysis of aluminium	
	To know the process of extracting aluminium from its ore.	oxide.	
Electrolysis of solutions	To be able to predict the products of the electrolysis of an aqueous solution. To perform an investigation into the electrolysis of a solution using inert electrodes.	To know the half-equation at each electrode during the electrolysis of an aqueous solution.	
Revision	To prepare revision resources for a formal assessment of lessons in the topic "Electrolysis".		
Test and LAQ	To assess knowledge and understanding via examination questions and a		

	longer written response answer.		
The conservation of mass	To know that the law of conservation of mass states that no atoms are lost or made during a chemical reaction so the mass of the products equals the mass of the reactants.	To know that chemical reactions can be represented by symbol equations which are balanced in terms of the numbers of atoms of each element involved on both sides of the equation.	
Relative formula mass	To know what is meant by the relative formula mass of an element. To be able to calculate the relative formula mass of a simple compound.	To be able to calculate the relative formula mass of a complex compound.	
Explaining the conservation of mass	To understand that some reactions may appear to involve a change in mass	To be able to explain any observed changes in mass in non-enclosed systems during a chemical reaction given the balanced symbol equation for the reaction and explain these changes in terms of the particle model	
Moles	To be able to calculate the number of moles (or the mass) given the mass (or number of moles) of substance using simple ratios.	To be able to calculate the number of moles (or the mass) given the mass (or number of moles) of substance using more complex ratios.	

Calculating masses	To know that chemical	To know that the balancing	
•	equations can be interpreted	numbers in a symbol	
from equations	in terms of moles.	equation can be calculated	
	To be able to calculate the	from the masses of reactants	
	masses of reactants and	and products by converting	
	products from the balanced	the masses in grams to	
	symbol equation and the mass	amounts in moles and	
	of a given reactant or product.	converting the numbers of	
		moles to simple whole	
		number ratios	
Mid-topic Test	To assess knowledge and		
	understanding via		
	examination questions.		
Concentration	To know that the	To be able to explain how the	
	concentration of a solution	mass of a solute and the	
	can be measured in mass per	volume of a solution is related	
	given volume of solution, eg	to the concentration of the	
	grams per dm ³ (g/dm ³)	solution.	
	To be able to calculate the		
	mass of solute in a given		
	volume of solution of known		
	concentration in terms of		
	mass per given volume of		
	solution		
Concentration and	To know that the	To be able to explain how the	
	concentration of a solution	concentration of a solution in	
moles (Chem)	can be measured in mol/dm ³	mol/dm ³ is related to the	
	To know that the amount in	mass of the solute and the	
	moles of solute or the mass in	volume of the solution	
	grams of solute in a given		
	volume of solution can be		

	calculated from its concentration in mol/dm ³		
Titration calculations (Chem)	To know that the amount in moles of a solute in a given volume of solution can be calculated from its concentration in mol/dm ³ To know that if the volumes of two solutions that react completely are known and the concentration of one solution is known, the concentration of the other solution can be calculated	To be able to determine the concentration of unknown solutions using titration techniques and calculations	
Limiting Quantities	To know that in a chemical reaction involving two reactants, it is common to use an excess of one of the reactants to ensure that all of the other reactant is used	To be able to explain the effect of a limiting quantity of a reactant on the amount of products it is possible to obtain in terms of amounts in moles or masses in grams	
Percentage Yield (Chem)	To know that even though no atoms are gained or lost in a chemical reaction, it is not always possible to obtain the calculated amount of a product To know that the amount of a product obtained is known as the yield. When compared	To be able to calculate the percentage yield of a reaction	

	with the maximum theoretical amount as a percentage, it is called the percentage yield		
Atom Economy (Chem)	To know that the atom economy (atom utilisation) is a measure of the amount of starting materials that end up as useful products.	To be able to calculate the atom economy of a reaction to form a desired product from the balanced equation	
Gas volumes (Chem)	To know that the volume of one mole of any gas at room temperature and pressure (20°C and 1 atmosphere pressure) is 24 dm ³ To be able to calculate the volume of a gas at room temperature and pressure	To be able to calculate volumes of gaseous reactants and products from a balanced equation and a given volume of a gaseous reactant or product	
Revision	To prepare revision resources for a formal assessment of lessons in the topic "Chemical Calculations".		
Test and LAQ (Chem)	To assess knowledge and understanding via examination questions and a longer written response answer.		